
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. XX, MONTH YEAR 1

Food Recommendation: Framework, Existing
Solutions and Challenges

Weiqing Min, Member, IEEE, Shuqiang Jiang, Senior Member, IEEE, Ramesh Jain, Fellow, IEEE

Abstract—A growing proportion of the global population
is becoming overweight or obese, leading to various diseases
(e.g., diabetes, ischemic heart disease and even cancer) due
to unhealthy eating patterns, such as increased intake of food
with high energy and high fat. Food recommendation is of
paramount importance to alleviate this problem. Unfortunately,
modern multimedia research has enhanced the performance and
experience of multimedia recommendation in many fields such as
movies and POI, yet largely lags in the food domain. This article
proposes a unified framework for food recommendation, and
identifies main issues affecting food recommendation including
incorporating various context and domain knowledge, building
the personal model, and analyzing unique food characteristics.
We then review existing solutions for these issues, and finally
elaborate research challenges and future directions in this field.
To our knowledge, this is the first survey that targets the
study of food recommendation in the multimedia field and
offers a collection of research studies and technologies to benefit
researchers in this field.

I. INTRODUCTION

Food is always central to the human life. Besides the air
we breathe, food is the only physical matter, which humans
take into the body. In the early days, humans faced the
task of identifying and gathering food for their survival. At
present, the dietary choice is becoming vital in satisfying
diverse needs, such as basic nutrition, calorie, taste, health
and social occasions. According to the International Diabetes
Federation, about 415 million people worldwide suffer from
diabetes, and the rate of diabetes incidence is projected to
further increase by more than 50% by 2040, becoming one
great threat to global health. The dietary factor is one main
cause of the dramatic increase in the incidence of obesity and
diabetes [1], [2]. The Global Burden of Disease Study also
indicates dietary factors as a major contributor to levels of
malnutrition, obesity and overweight, and unreasonable diets
lead to 11 million avoidable premature deaths per year [3].
Food computing [4] is emerging as a new field to ameliorate
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these issues. As an important task in food computing, food
recommendation intends to find suitable food items for users
to meet their personalized needs, and thus plays a critical role
in human dietary choice.

A balanced diet is crucial to maintain one’s physical health.
However, nutrients that need to be ingested vary greatly
depending on personal food preference and health conditions.
Therefore, how to provide personalized food recommendation
according to different personal requirements is very important.
The past decade has witnessed the rapid growth of internet
services and mobile devices. It has been more convenient
for people to access huge amounts of online multimedia
food content from various sources, such as forums, social
media, recipe-sharing websites and customer review sites.
Although this growth allows users to have more choices, it also
brings problems for users to select preferred food items from
thousands of candidates. Therefore, food recommendation is
becoming increasingly essential for serving potentially huge
service demand and can help users easily discover a small
subset of food items which are enjoyable and suitable for them.

Compared with recommendation in other fields, food rec-
ommendation has its own characteristics. For example, food
preference learning is an important step towards food recom-
mendation. However, food preference involves various fac-
tors, such as taste preference, perceptive difference, cogni-
tive restraint, cultural familiarity and even genetic influence1.
Therefore, it makes accurate food preference learning more
difficult. Furthermore, food recommendation should consider
more context information. Besides basic context information
captured from familiar mobile devices [5], such as time,
location and environmental information (e.g., temperature and
PM2.5), various body state-related signals, such as steps taken,
heart rate, sleep quality, body acceleration and even affective
states can also be captured from new sensing devices, such
as watches, wearable fitness trackers and bracelets [6]. These
signals can describe users’ actual body conditions compre-
hensively in real-time and is of crucial importance for food
recommendation. However, they are with different statistical
properties, either discrete or continue, and make effective
multi-sensor context fusion challenging. As a result, simply
borrowing methods from recommendation methods in other
fields without considering characteristics of food recommen-
dation probably leads to inferior performance. This negligence
will eventually result in a bottleneck in advancing intelligent
food recommendation for use in real-world applications.

Existing multimedia research has made great progress in

1https://www.eurekalert.org/pub releases/2017-04/eb2-cgi041217.php
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Fig. 1: The general framework of food recommendation, where collaborative learning is adopted to learn both user latent vectors and
item latent vectors after embedding and integration on context-dimension, user-dimension and food item-dimension, respectively. For each
dimension, the signals from different sources are first changed into the feature representation via embedding, and are then fused into final
representation via integration.

improving the recommendation performance and experience
in many fields such as movies and POI, yet largely lags in
the food domain. To the best of our knowledge, although
relevant works on food recommendation [7], [8], [9] have
received more attention in the multimedia community, there
are very few systematic reviews, which provide a unified
framework and comprehensive summary of current efforts in
food recommendation. Because of huge potentials in food
recommendation, the time has come for the multimedia field
to give a survey on food recommendation, which can help
researchers from relevant communities better understand the
strength and weakness of existing methods. In this paper,
we give a survey on food recommendation. Particularly, the
objective of this article is as follows: to propose a unified
framework for food recommendation and identify main issues
affecting food recommendation (Section II); to review existing
progress for these issues (Section III), and to outline research
challenges and future directions in this field (Section IV and
Section V). Finally, we conclude the survey in Section VI.

Note that recently there is one survey work on food recom-
mendation [10]. Our survey and [10] both summarize existing
methods, challenges and future directions, and are both very
complementary to benefit researchers and practitioners work-
ing in this field. However, there are three important differences
between this work and [10]: (1) To our knowledge, we first
systematically define the problem of food recommendation
and summarize its three unique aspects. (2) We propose a
unified food recommendation framework, and put previous
studies together under this unified umbrella. Consequently, our
taxonomy on existing food recommendation works is different
from [10]. (3) We put more emphasis on multimedia-oriented
food recommendation, where how to utilize and fuse multi-
modal signals (e.g., images,voice and text) and rich context for
food recommendation is highlighted. In contrast, [10] mainly
focuses on food recommendation based on recommendation
techniques.

II. PROPOSED FRAMEWORK

Definition Food recommendation aims to provide a list
of ranked food items for users to meet their personalized
needs. Here, food is a more broad concept, and it includes
all food-related items, such as meal, recipes, coffee shops
and restaurants. Food recommendation is typically multidisci-
plinary research, including nutrition, food science, psychology,
biology, anthropology, sociology, other branches of natural and
social sciences2.

Compared with other types of recommendation, there are
mainly three aspects unique for food recommendation. (1)
Food recommendation involves different context and domain
knowledge. Rich user context (e.g., the heart rate and steps
taken) and external environmental context (e.g., physical
activity-relevant and health-relevant context) captured from
different sensors describe users’ actual physical conditions
and their surroundings, and thus provide valuable information
for exact match between user requirement and food items.
For example, food recommendation probably recommends one
user food items with much water and protein after exercise
captured from sensors. Furthermore, food recommendation is
very relevant to health. Therefore, medical knowledge, dietary
knowledge and other relevant domain knowledge should also
be incorporated into the food recommender system for con-
straint optimization and computing. (2) From the user aspect,
the most significant difference is that food recommendation
is very relevant to user’s health. Therefore, an ideal food
recommendation system should self-adaptively build a trade-
off between personalized food preference/interest and person-
alized nutrition/health requirement. For example, even one
diabetic likes sweet food, it is more reasonable for food rec-
ommendation to recommend him/her the food with less sugar
than before. Besides user’s health needs, food recommendation
should also consider other complex and various fine-grained
user needs, such as allergies and life-style preferences (e.g.,

2https://www.wur.nl/en/show/Food-preferences.htm
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the desire to eat only vegan or vegetarian food). Therefore,
a personal model should be built to take these factors into
consideration. (3) Food has its own characteristics, and many
unique factors, such as cooking methods, ingredient combina-
tion effects, preparation time, nutritional breakdown, and non-
rigid visual appearance should be analyzed to obtain high-level
semantic concepts and attributes for food recommendation. For
example, nutritional and calorie intake can be calculated by an-
alyzing captured food images to create a quantitative nutrition
diary. Therefore, multimodal heterogeneous food analysis is
necessary to accurately obtain high-level understanding of the
food type and other levels of semantics.

Taking all these factors into consideration, we propose a
unified framework (as shown in Fig. 1), which can jointly
utilize rich context and knowledge, user information, and
heterogeneous food information for food recommendation. In
order to combine these content information with user-food
item interaction, a hybrid recommendation strategy is utilized
[11] in the food recommendation framework, where joint col-
laborative learning is adopted to learn both user latent vectors
and item latent vectors after embedding and integration on
context-dimension, user-dimension and food item-dimension,
respectively. For each dimension, the signals from different
sources are first changed into the feature representation after
embedding, and are then fused into final representation via
integration, where different embedding and integration meth-
ods can be adopted. Final recommendation is generated from
these learned user vectors and item vectors under context
constraints. Particularly, food recommendation mainly consists
of three components, namely context and knowledge incorpo-
ration, personal modal construction and heterogeneous food
analysis. Note that the context and knowledge can not only put
more constraints on food recommendation independently, but
also be used to support the personal model construction and
heterogenous food analysis. In addition, heterogenous food
analysis is also helpful for building the complete personal
model. Next, we will identify detailed requirements of three
components, respectively.

A. Context and Knowledge Incorporation

Basic context information (e.g., time and location) can
help filter out irrelevant items for recommendation. Compared
with other types of recommendation, food recommendation
involves more complex, diverse and even dynamic factors.
Rich user context and external environmental context infor-
mation describe users’ actual physical conditions and their
surroundings, and thus provide valuable information for exact
match between user requirement and food items of interest.

Over the last decade, a great variety of wearable elec-
tronic devices and ambient sensors have been developed [12].
They can monitor personal body conditions and environmental
changes everywhere in real time by connecting users to
surrounding machines. The new sensing devices, ranging from
social sensors to biosensors [6] can measure physiological
parameters to produce various signals, such as step sizes,
heart rate, sleep quality, body acceleration, blood pressure
and affective states (Fig. 2). In addition, various health and
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Fig. 2: Various signals from sensor devices.The new sensing devices
can measure physiological parameters to produce various signals,
such as step sizes, heart rate, sleep quality, body acceleration, blood
pressure and even emotion.

fitness mobile apps such as MyFitnessPal, Endomondo and
Fitbit can also help people keep track of what they eat,
when they exercise, and how well they sleep. Exploiting
these context information will enable more reasonable and
accurate food recommendation. For example, if the level of
sugar captured from the sensor is high for one user, it is
necessary to recommend this user the food with little sugar
or low conversion sugar. Food recommender system probably
recommends one user the food with much water and protein
after exercise, captured from sensors. Besides rich context,
health-relevant expert knowledge (e.g., medical knowledge and
nutrition knowledge) should also be considered. Food recom-
mendation via expert knowledge is a potential key to unlock
healthy diets, and thus gives more precise recommendation
results.

There are mainly two issues to solve when applying rich
context and knowledge for food recommendation: (1) Current
wearable sensing technologies face many challenges, such as
inaccuracy and uncertainty of measurement, multi-functional
integration and adverse impacts on the environment. There-
fore, there are still many body-related signals, which are
harder to capture accurately or even not available. More new
wearable sensing technologies should be developed to obtain
comprehensive human signals relevant to food recommenda-
tion. For example, researchers recently designed new sensors
to detect muscle motions involved in every chew, and finally
can accurately create a time-stamped visual record of the food
consumed [13]. (2) Multiple-sensor context predominantly
is segregated with the taxonomy of categorical/discrete and
ordinal/continuous features in time and space. For example,
some signals such as step count is discrete while others such as
electrocardiogram are continuous. In addition, the categorical
features probably vary widely in their cardinality. Some are
binary while others have many possible values. It is difficult
to model user states to accommodate a mixture of discrete and
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continuous variables in a joint model, not to mention external
knowledge. Inappropriate representation and fusion methods
for rich context and knowledge are even not as effective as
methods without any context. In addition, the variety and
number of contexts makes it hard to measure all available
data, which in turn introduces new uncertainty levels for food
recommendation. Therefore, an effective multi-sensor fusion
method should be developed to overcome these problems.

B. Personal Model Construction

Personal model construction involves collecting and fusing
relevant information of users to generate a user model for
food recommendation. A food recommendation agent cannot
function accurately until the personal model has been well
constructed. The system needs to know the information from
the user as much as possible in order to provide reasonable
and precise recommendation.

A user profile is a collection of personal information
associated with a specific user, and can be considered as
a simple personal model. In contrast, food recommendation
considers more complex, dynamic and various constrained
factors, such as attitudes and beliefs about food and recipes,
personal food preference, lifestyles, hobbies, and even cultural
and social aspects. In order to effectively construct the personal
model for food recommendation, we should capture and fuse
various signals from above-mentioned sensors, websites and
social media. People have started recording health-related
information using sensors ranging from simple wearable ac-
celerometers that could be classified and recorded in simple
activities (such as walking, jogging and climbing stairs) to
other measurements (such as body temperature, heart rate,
perspiration rate, galvanic skin resistivity, and many other
deeper parameters). We can use this to model user’s real-time
states continuously. In addition, we are leaving digital traces
of all kinds of activities online in the social media. As food
is central in our life, a significant fraction of online content
is about food. A huge amount of information about eating
habits is now being recorded digitally and available. Besides
shared multimedia food content, we can obtain both basic user
information (e.g., the age, gender and residence) and more
detailed information (e.g., diets and allergies). For example,
we can obtain fine-grained information from Yummly, such
as diets (e.g., vegetarian or low fodmap), allergies (e.g.,
seafood or tree nut), disliked ingredients (e.g.,sugar or beef),
favorite cuisines (e.g., Chinese and Indian cuisine), taste (e.g.,
sour, salty, sweet, bitter and meaty) and food restrictions
(e.g., vegetarian, vegan, kosher and halal). All these user
information can also be taken into consideration for personal
model construction via heterogeneous media processing.

Among these different data sources, Foodlog is an important
source for personal model construction. Foodlog has recorded
users’ food intake by taking photos of their meals or writing
the diary for food assessment and journaling. Traditional
methods of keeping a food journal resort to manually recording
meals in as much detail as possible by including the portion
size, number of servings and calories, time, location, or even
the people around us. Currently, multimodal food journal is

developed [14]. The rich and detailed recording information
provides us with fine-grained and accurate user preference
on food, and finally leading to accurate personal model con-
struction. However, to the best of our knowledge, few works
exploits rich structured information from Foodlog to learn
personalized food preference for personal model construction.

Besides complex food preference, personal nutritional and
health factors should also be emphasized in building the
personal model. For example, nutritional fitness offers an
objective way to prioritize recommended foods for each phys-
ical and dietary condition [15]. That is, food recommenda-
tion should consider not only what he likes, but also what
is nutritionally appropriate. When we incorporate nutrition
information into food recommendation, it should be also
personalized. Each user’s nutrition is complex and uncertain
on many levels [16]. This contrasts with most public nutrition
and health advice, which is generic, non-specific healthy eating
advice e.g., eat at least five portions of fruit and vegetables
daily. Therefore, how to accurately build a personal model is
an important issue, and should be deeply explored.

C. Heterogeneous Food Analysis

Food analysis is one basic component of food recommen-
dation, as it provides prerequisites for obtaining a high-level
understanding of the type (e.g., food category and ingredients),
the volume of consumed food, nutrition and calorie intake
by the user. Particularly, heterogeneous food analysis can be
considered from the following three aspects.

(1) Effective representation of single modality. Take food
images as an example, with the prosperity of mobile services,
more and more users tend to take photos they eat instead
of text recording. Food images has become more preva-
lent. Visual analysis provides not only ingredient and calorie
information, but also visual perceptual information. It has
proved that visual information is helpful for food preference
learning [17]. However, it is very difficult for fine-grained
visual food representation because of their indistinctive spatial
configuration and various types of geometrical variants [18].
Different from general object recognition, many types of
food do not exhibit distinctive spatial configuration. They are
typically non-rigid, and the structure information can not be
easily exploited. Therefore, existing recognition approaches
on general objects probably do not perform well for lack of
effective visual food representation.

(2) The multimodality of food data. The food actually
involves multi-modalities. We see food, feel its texture, smell
its odors, taste its flavors and even hear its sounds when
chewing. For example, when we bite into an apple, not only
do we taste it, but also hear it crunch, see its red skin, and
feel the coolness of its core [19]. Visual information of a
food product such as color and texture can exert an influence
on the acceptance of food products [20]. Furthermore, with
the explosive growth of multimedia food content and service,
food items consist of different modalities or structures, such
as food images, cooking videos, ingredient lists, cooking
instructions and various attributes. We should fuse different
types of modalities for effective food representation. Despite
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Fig. 3: Live context aware personalized dietitian system [8].

these advances, multimodal food fusion still faces some chal-
lenges. For example, signals might not be aligned, such as
continuous food image signals and discrete ingredient signals.
Each modality might exhibit different types and different levels
of noise at different points.

(3) The heterogeneity of food data. Food data has also
different structures, and thus contains richer semantic informa-
tion. For example, in food-oriented Knowledge Graph (KG),
entities usually include food items and relevant attributes (e.g.,
ingredients and taste), and the relationship between entities
(e.g., belong to “Kung Pow Chicken belongs to Chinese
cuisine”, and include “Chow mein includes noodles, soy sauce
and vegetables ingredients”). KG can benefit the recommen-
dation in many aspects, such as improving the precision and
diversity of recommended items. Because the dimension of
knowledge graph is higher and the semantic relationship is
richer, the processing of KG is more complex and difficult.

III. EXISTING SOLUTIONS

Taking the above-mentioned issues into consideration, this
section first surveys existing solutions from the following three
aspects, corresponding to each component of the proposed
food recommendation framework: 1) incorporating context
and knowledge for food recommendation, 2) personal model
construction for food recommendation, 3) heterogeneous food
analysis for food recommendation. In addition, considering the
importance of nutrition and health in food recommendation,
we therefore surveys existing solutions on 4) nutrition and
health oriented food recommendation.

A. Incorporating Context and Knowledge for Food Recom-
mendation

Food recommendation is highly dependent on current con-
text. Any such context would need to be detected either
by direct user input or sensing environmental variables via
various sensors, such as GPS and accelerometers to heart-
rate monitoring and blood oxygen level. The location context
has been widely used for food recommendation [21], [22],
[8]. For example, Yanjie et al. [21] integrated the geographic
proximity into one generative probabilistic model to capture

the geographic influence for restaurant recommendation. An-
other important dimension is time, and it is very relevant
to food recommendation because of food popularity [23].
Nag et al. [8] further fused more types of context data via
one pre-defined equation, such as barometer and pedometer
output to estimate user’s daily nutritional requirements for
local dish recommendation. The emerging sensor technologies
such as social sensors and biosensors [24], [6] provided
richer sensing context, especially health-relevant one. These
context information put more constraints on recommendation
to improve the accuracy of recommendation system.

Besides rich context from various sensors, efforts in mod-
eling expert knowledge are made. For example, nutrition facts
can be readily available for all major restaurant chains. For
packaged items, algorithms that use this information are most
promising for immediate consumer use and health impact.
USDA Food Composition Databases3, North American de-
rived Nutrient Rich Foods Index 6.3 (NRF) [25] and British
FSA [26] have been built based more heavily on available
nutrition facts. However, they have not been established to
capture expert knowledge of dietitians.

As representative work, Nag et al. [8] proposed a live
personalized nutrition recommendation system. As shown in
Fig. 3, a decision support system is made by fusing timely,
contextually aware, personalized data to find local restaurant
dishes to satisfy user’s needs. Multi-modal contextual data
including GPS location, barometer, and pedometer output is
fused through one pre-defined equation for calculating daily
values. The calculated daily values are then used to rank the
meals for local meal recommendation.

Discussion. In this section, we identify different types of
context and their combination for food recommendation. The
common context such as GPS and time information has been
extensively used for food recommendation. One simple and
effective method is to directly use these context to filter out
irrelevant food items as the constraints, such as [22], [8].
Besides common spatio-temporal context, we can obtain richer
context information, such as the physical state and health state
captured from various sensors. In this case, a joint model
is necessary to accommodate a mixture of both discrete and
continuous context variables, such as [21]. However, the noise
generated from these sensors makes effective context modeling
more difficult. As for the domain knowledge, one reasonable
method is to construct the food knowledge graph for food
recommendation. However, there are few food knowledge
graphs available. As a result, food knowledge has not been
fully exploited by existing methods.

B. Personal Model Construction for Food Recommendation

The important step in making effective food recommenda-
tion is to build a personal model. Few works focus on personal
model construction. The earlier work [27] proposed a high-
level architecture of an objective self system for quantified self,
namely personal model construction. As shown in Fig. 4, the
proposed architecture consists of three main components data
ingestion, life event recognition and pattern recognition. Data

3https://ndb.nal.usda.gov/ndb/search/list
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Fig. 4: High-level architecture of personal model construction sys-
tem [27].

ingestion uses various sensors and preprocessing modules to
extract appropriate attributes. Life event recognition predicted
the most appropriate life activity from a set of predefined
event classes based on pattern recognition. Later, Nag et
al. [8] further utilized the objective self [27] for lifestyle
recommendation.

In building the personal model, learning user’s food pref-
erence is vital as it provides personalized information for
effective food targeting and suggestions. Users’ food pref-
erence learning is mainly conducted via various types of
interactions, including survey based methods, web activity
(e.g., ratings, browsing history and implicit feedbacks) based
methods, online learning methods, food log based methods
and dialogue based methods.

A typical on-boarding survey method should ask a number
of multi-choice questions about general food preferences. Such
methods are generally adopted by many commercial systems,
such as Zipongo4, Shopwell5 and PlateJoy6. For example, a
daily meal planner app PlateJoy elicits preferences for healthy
goals and dietary restrictions with some questions, such as
“Are there any ingredients you prefer to avoid? avocado,
eggplant, eggs, seafood......”. Yummly also asks users to se-
lect allergies (e.g., seafood or tree nut), disliked ingredients
(e.g., sugar or beef) and favorite cuisines (e.g., Chinese and
Indian cuisine). Survey based preference elicitation methods
are generally coarse-grained, and it cannot comprehensively
capture user’s preference.

Current popular methods resort to hybrids of historical
records and item ratings for food preference learning [28],
[29]. For example, Mouzhi et al. [29] extended matrix factor-
ization by including additional parameters used for modelling
the dependencies between assigned tags and ratings. For
matrix factorization, let pu ∈ Rk and qm ∈ Rk denote
the vector of user u and recipe m. In matrix factorization,
ratings are estimated by computing the dot product of vectors
r̂um = pT

uqm. After introducing the tags assigned to the

4https://meetzipongo.com/
5http://www.shopwell.com
6https://www.platejoy.com/

user and recipe into the model, ratings are now estimated as
follows:

r̂um = (pu +
1

|Tu|
∑
t∈Tu

xt)
T (qm +

1

|Tm|
∑
s∈Tm

ys) (1)

where xt, ys denote the feature vector from user’s and recipe’s
tags, respectively. Tu and Tm are the set of tags assigned by
the user u and recipe m, respectively.

However, such methods suffer from the scarcity of user
feedback. In contrast, Some works [30], [17], [31] resorts
to using visual content to learn user’s food preference. For
example, Longqi et al. [30], [17] learned users’ fine-grained
food preference with only visual content. They proposed
a food recommendation system PlateClick (Fig. 5), which
consists of two stages, namely offline visual food similarity
embedding and online food preference learning. In the first
stage, a deep Siamese network is trained for visual food
similarity embedding from pairwise food image comparisons.
This network is to learn a low dimensional feature embedding
that pulls similar food items together and pushes dissimilar
food items far away. Contrastive loss is selected as the loss
function and can be expressed as:

L = {
∑
(i,j)

[yLo(xi,xj) + (1− y)Ls(xi,xj)]} (2)

where Lo(xi,xj) and Ls(xi,xj) denote the contrastive con-
straint for ordered image pairs and the similar constraint for
un-ordered image pairs, respectively. When incorporating deep
feature learning into Eqn. 2, they are denoted as:

Lo(xi,xj) =
1

2
(max(0, 1− (f(xi)− f(xj)))

2

Ls(xi,xj) =
1

2
(f(xi)− f(xj))

2
(3)

f(xi) is one low-dimensional feature embedding for xi. y ∈
{0, 1} indicates whether the input pair of food items xi, xj

are similar or not (y = 0 for similar, y = 1 for dissimilar).

In the second stage, a novel online learning framework
is explored for learning users’ preferences based on a small
number of user-food image interactions. The core of online
learning lies in the preference propagation in locally connected
graphs. Because of the subjectivity and uncertainty of visual
perception from users, such methods can not accurately learn
food preference.

Recently, there are also some new methods for food pref-
erence learning. For example, Jie Zeng et al. [32] proposed
a dialogue system to elicit user’s food preference via human-
robot interaction. To guarantee the conversation about food, the
taste/texture expressions about dishes/ingredients are extracted
from Twitter, and are registered as the default knowledge base
of the dialogue system.

Food journal/diary/log records users’ food intake and daily
diet by taking photos of their meals or writing the diary in
detail by including the portion size, number of servings and
calories, time, location, or even the people around us [20].
This detailed description is effective, and thus we can learn
users’ food preference based on these historical records. For

https://meetzipongo.com/
http://www.shopwell.com
https://www.platejoy.com/
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Fig. 5: PlateClick system pipeline [30].

example, Nutrino7, a personal meal recommender, asks users
to log their daily food consumption and learn users’ fine-
grained food preferences. As is typical of systems relying
on user-generated data, food journaling suffers from the cold-
start problem, where recommendations cannot be made or are
subject to low accuracy when the user has not yet generated a
sufficient amount of data. This is because traditional methods
of keeping a food journal are manually recorded and it is
very easy to forget or procrastinate logging food entries. In
order to solve this problem, some methods have been proposed
via image recognition to recognize food items. For example,
Foodlog [14] has contributed to a record of users’ food intake
simply by taking photos of their meals. Recently, multimodal
Foodlog [33] is proposed to automatically recognize the start-
ing moment of eating, and then prompt the user to begin a
voice command food journaling method. With the popularity
of mobile devices and advanced sensing technologies, learning
user’s food preference via exploring food logs will be one
effective way to accurately learn fine-grained user’s food
preference. Foodlog contains richer and more comprehensive
dietary records, exploring Foodlog for accurate personal model
construction will be a promising direction. However, because
of heterogeneous multimodal content from Foodlog, it is not
easy to build the personal model based on the Foodlog.

Discussion. Accurate personal model construction for food
recommendation is still challenging because of its complexity
of modeling and the diversity of factors to consider. As one
important factor for one personal model, food preference learn-
ing has been widely exploited for food recommendation via
various ways, such as survey based methods, historical records

7http://nutrino.co/

Fig. 6: Illustration of the overall system [34].

based methods and dialog-based methods. Some technologies
such as matrix factorization and deep Siamese network are
utilized. However, the former suffers from the scarcity of
user data while the latter needs to construct a lot of item
pairs. On the other hand, Foodlog comprehensively records
users’ food intake, daily diet and other user profiles. Therefore,
Foodlog-oriented food preference learning is expected to be
very promising in the future.

C. Heterogeneous Food Analysis for Food Recommendation

For single modality-oriented representation, the basic anal-
ysis method is visual food recognition with or without context
information [7], [35], [36], [37], [38], [39]. We can obtain a
high-level understanding of the type and the amount of food
consumed by the user via food recognition. It has been used in
Foodlog [37], food preference elicitation [40], [17] and dietary
tracking [41] for further food recommendation. As represen-
tative work, Myers et al. [34] presented a system which can
recognize the content of the meal from one image, and then
predicted its nutritional content, such as calories. It used a
segmentation based approach to localize the meal region of the
food photo, and then applied CNN-based multilabel classifiers
to label these segmented regions. Once the system segmented
the foods, it can estimate their volume. There are also other
works for food volume estimation via the 3D model based on
multiple food images [42].

Besides visual information, there are other types of content
information available, such as ingredients and various food
attributes for food recommendation. For example, Peter et
al. [43] incorporated ingredient information as linear con-
straints to extend the matrix factorization model for recipe
recommendation. Devis et al. [44] selected relevant recipes
via the comparisons among features used to annotate both
users’ profiles and recipes. Min et al. [45] considered one
recipe as one document and one ingredient as one word, and
proposed a probabilistic topic model for recipe representation.
Other recipe attributes are also incorporated into the model
to discover cuisine-course specific topic distribution to enable
both cuisine and ingredient oriented recipe recommendation.
Lin et al. [46] fused features from different types of informa-
tion, such as ingredients, dietary, preparation, courses, cuisines

http://nutrino.co/


IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. XX, MONTH YEAR 8

and occasion into unified representation, and then used a
content-driven matrix factorization approach to model the
latent dimension of recipes, users, and features, respectively.

Combination of different food modalities leads to the mul-
timodality of food, which particularly lies in the following
two aspects: (1) One important factor determining our food
choice is how we perceive food from its certain character-
istics. We perceive food through a number of simultaneous
sensory streams-we see food objects, hear its sounds when
chewing, feel its texture, smell its odors and taste its flavors.
Therefore, food perception actually involves multi-modalities.
Food perception has an important affect on food preference
learning. Accurate food perception should also learn multi-
modal sensory information [47]. (2) We are living in the age
of the social web, and leave digital traces of all types of food-
relevant activities online. For example, online recipe websites
often have rich modalities and metadata about recipes. Each
food item in Yummly consists of the visual food photo,
textual content (e.g., name and ingredients) and attributes (e.g.,
cuisine and course). With the advent of Twitter, Facebook and
Instagram, it is a common practice to upload food relevant
text, share food photos. The multimodal information contains
rich, detailed information about what people eat, how much,
when, where, and even with whom. Such multimodal food
information can provide a valuable signal for diet profiling
and food preference elicitation.

Multimodal fusion methods [48], [49], [45] are needed to
effectively combine different modalities. For example, Nag et
al. [9] combined food images and GPS context for Foodlog.
They [50] then fused multiple user source data streams along
with the domain knowledge for cross-modal health state esti-
mation. Recently, Markus et al. [51] used different kinds of
features from different modalities, including a recipe’s title,
ingredient list and cooking directions, popularity indicators
(e.g., the number of ratings) and visual features to estimate the
healthiness of recipes for recipe recommendation. In addition,
Chu et al. [52] combined text information, metadata and
visual features for restaurant attributes and user preference rep-
resentation. Two common recommendation approaches, i.e.,
content-based filtering and collaborative filtering are then inte-
grated for restaurant recommendation. Recently, the capability
of Deep Learning (DL) in processing heterogeneous data [53],
[54] brings more opportunities in recommending more accu-
rate and diverse items. For example, Min et al. [53] utilized
the deep belief network to jointly model visual information,
textual content (e.g., ingredients), and attributes (e.g., cuisine
and course) to solve recipe-oriented problems. Salvador et
al. [54] developed a multi-modal deep neural model which
jointly learns to embed images and recipes in a common space
for shared multi-modal representation.

As one representative work, Fig. 7 shows the flow of recipe
recommendation system from the smart phone [55], [7]. The
user first points a smartphone camera toward food ingredients
at a grocery store or at a kitchen to recognize food ingredients,
and then searches online cooking recipe databases with the
name of the recognized food ingredient as a search keyword,
and retrieve a menu list. Finally, the user selects one menu
from the menu list and displays the corresponding cooking

Fig. 7: Illustration of the overall recipe recommendation system [55].

recipe including a list on necessary ingredients and seasonings
and a cooking procedure on the pop-up window.

Compared with multimodal data, KG can organize hetero-
geneous food data into one effective semantic structure to
enable food recommendation. It has been widely used for news
recommendation [56] and movie recommendation [57]. To our
knowledge, there is only one work [58], which constructed the
food KG for semantic recipe retrieval.

Discussion. Rich food information is generally heteroge-
neous and complex, and is roughly divided into two types:
multi-modal data and KG. Multimodal food analysis is be-
coming one fundamental stage for food recommendation.
Deep learning methods have been one popular method for
multimodal food analysis. However, some traditional models,
such as probabilistic graphical models are still being used,
especially for tasks with limited training samples. Despite
these advances, multimodal food analysis still faces a number
of difficulties. For example, some modalities such as smell
and taste are very important for food recommendation, but is
harder to quantify, not to mention the following multimodal
fusion. In addition, there are few KG-oriented food recom-
mendation methods because of the lack of a large-scale food
KG. Constructing the food KG to enable food recommenda-
tion will help improve the recommendation performance and
interpretability.

D. Nutrition and Health Oriented Food Recommendation

Many people are facing the problem of making healthier
food decisions to reduce the risk of chronic diseases such as
obesity and diabetes, which are very relevant to what we eat.
Therefore, food recommendation not only caters user’s food
preference but should be also able to take user’s health into
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account. Correspondingly, how to build the model to balance
these two components becomes the core problem for health
and nutrient-based food recommendation.

Most methods have tried to incorporate healthiness into
the recommendation process by substituting ingredients [59],
[40], incorporating calorie counts [60], generating food plans
[61], and incorporating nutritional facts [9], [62], [22]. For
example, Ge et al. [60] simply calculated the weighted mean
between the preference component and health component,
where the weights are manually adjusted by the user. Nag et
al. [9] utilized food recognition method to obtain food-relevant
information, and then obtain nutritional information for recom-
mendation. In addition to health-aware food recommendation
for general public, there are some works on recommendation
for toddlers. For example, Yiu-Kai et al. [62] proposed a
personalized toddler recipe recommendation system which
incorporates the standard nutrition guideline published by the
US government with users’ food preference for toddlers. A
hybrid recommendation approach, which incorporates content
information directly as a linear constraint to provide additional
insights about the contents themselves is adopted. Ribeiro
et al. [63] considers more factors including nutrition, food
preferences and the budget for meal recommender system for
older adults.

Discussion. One important difference between food recom-
mendation and other types of recommendation is that users’
health information should be considered. Current methods
mainly consider the nutrition information via visual food
analysis or external nutrition table look-up for nutrition-
oriented recommendation. However, user’s real-time health-
relevant state information is neglected. With the develop-
ment of various sensor technologies, such information can
be obtained from various portable devices, such as watches
and bracelets. In addition, existing methods balance user’s
food preference and user’s health via simple fusion, such as
weighted summation [60], which are probably not accurate.
More effective non-linear fusion methods between these two
factors should be explored.

IV. RESEARCH CHALLENGES

Food recommendation recently has received more attention
for its potential applications in human health. Thus, it is impor-
tant to discuss existing challenges that form major obstacles to
current progress. This section presents key unresolved issues.

A. Various Sensor Signal Fusion

Compared with recommendation in other fields, besides
common spatio-temporal context, we should understand and
model people states in food recommendation based on multiple
signals, such as the affective state, physical state and health
state captured from various sensors. The context information
is with different types of distribution. Therefore, a joint model
is necessary to model the user state to accommodate a mixture
of both discrete and continuous context variables. In addition,
although we can resort sensors to obtain various context, there
are still many signals, which are harder or inconvenient to
obtain. The measure inaccuracy, uncertainty and unreliability

from these sensors also exist. Therefore, further innovations
on sensors are also needed for materials and devices, with
the aim of more accurate sensing, the capability of detecting
more context and real-time monitoring. In addition, how to
filter out noise and conduct effective context fusion from
these sensors is worth studying in the future. When the
semantics from different modalities are not consistent, the
conflict disambiguation and reasonable decision mechanism
are further needed, but ignored in existing solutions.

B. Personal Model Construction

Few works focus on personal model construction for food
recommendation. Simple person model can be defined by
user’s context and some inherent health parameters such as
weight, height and activity steps. In order to achieve compre-
hensive and accurate personal model construction, according
to the objective self [27], we should complete it through
data ingestion, life event recognition, and pattern recognition.
However, each component is hard to achieve and the chal-
lenges derive from three-fold: (1) data ingestion uses various
sensors (e.g., smartphones and various wearable devices) and
preprocessing modules to extract appropriate attributes from
raw sensor measurements. However, the information obtained
from different sensors varies in many aspects. Methods to
convert data to information and the reliability of information
could be entirely different for different sensors. Furthermore,
as new sensing technologies emerge and are now becoming
omnipresent in daily lives, more types of sensor data will
be generated. It is difficult to effecitvely fuse heterogeneous
multimedia information from different sensors via a unified
model. (2) the proliferation of recipe-sharing websites (e.g.,
Yummly, Meishijie, foodspotting and Allrecipes) has resulted
in huge user-uploaded food data collections. These recipes
are associated with rich modality and attribute information.
Such recipe data with rich types can be exploited to an-
swer various food related questions in food recommendation.
Besides recipe-sharing websites, the social media, such as
Twitter, Foursquare, Flickr, and Instagram also provide large-
scale food data uploaded by users. An increasing amount of
user-shared food-related data presents researchers with more
opportunities for personal model construction. However, it also
presents researchers with challenges, such as much noise and
the sheer size of user-shared food data. (3) accurate personal
model construction benefits from fast development of many
technologies, such as natural-language processing, machine
learning and computer vision methods. For example, activity
recognition techniques are necessary for life event recognition,
and is still one hot problem in the computer vision. Lower
recognition performance leads to inaccurate personal model
construction, which conversely affects the experience of food
recommendation.

C. Visual Food Analysis

Visual food analysis can obtain a high-level understanding
of the type (e.g.,the food category and ingredients), the amount
of food consumed by the user and even the calorie, and thus
is very essential for food recommendation. This category can
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broadly be divided into different types, such as food category
recognition [18], [64], [65], food ingredient recognition [7],
cooking instruction recognition [54] and food quantity es-
timation [34], [42]. However, accurate visual food analysis
is very challenging. Food images have their own distinctive
properties. A large number of food dishes have deformable
food appearance and thus lacks rigid structures. Therefore, it
is hard for us to achieve satisfactory analysis results based
on existing visual analysis methods. In addition, visual food
analysis involves fine-grained visual feature representation
learning. However, we can not simply use existing fine-grained
feature learning methods for food analysis. One important
reason is that existing fine-grained feature learning methods
generally assume that there are fixed semantic patterns in each
image and the task is to discover these patterns. However, the
concepts of common semantic patterns do not exist in many
food images. Therefore, we should design a new visual feature
learning paradigm particularly for food.

D. Multi-Modality Food Analysis

Multi-modality is commonly the case in food recommen-
dation. For example, each recipe item in Yummly consists of
the food image, textual content (e.g.,ingredients and cooking
instructions), attributes (e.g., cuisine and taste), calories and
nutrition facts. Users adopt both captured food images and
text information for diet recording in the Foodlog. How to
effectively integrate various types of information into the
recommendation algorithm according to the characteristics of
the specific recommendation scene has been a challenging
problem, and how to enable effective feature extraction and
fusion from various types of multimedia content information is
also one core problem in this research field, not to mention the
tight coupling between multi-modal fusion and collaborative
filtering.

V. FUTURE DIRECTIONS

Food recommendation is still in its infancy in the multime-
dia community, and much more needs to be done to promote
the development in this field. In this section, we discuss some
open research directions and new research perspectives of food
recommendation.

A. Food Preference Learning

Compared with user’s preference on other objects, user’s
food preference has its own special features. Factors that
guide food preference are various, and it is a result of a
combination of biological, psychological, social, cultural and
historical influences. Benefiting from the rapidly growing body
of publicly available food data, it is convenient to utilize these
data to learn user’s food preference. However, they mainly
focused on modeling one or several aspects from these data
and neglected many other factors, which are probably hard to
obtain or model. Borrowing methodologies from other areas
such as psychology and neuroscience probably provides new
perspectives for accurate food preference learning. In addition,
most existing food recommender systems assumed that user’s

food preference is static. However, users’ food preferences
are dynamic in reality [66]. A reasonable solution is to adopt
deep reinforcement learning to model temporal dynamics of
food preferences for food recommendation.

B. Large-Scale Benchmark Dataset Construction

Like MovieLens-1M (https://grouplens.org/datasets/
movielens/1m/) for movie recommendation, a large-scale
dataset with rich user-food interaction and multimodal content
information (e.g., food images, ingredients and user comments
for one dish) is also a critical resource for developing advanced
food recommendation algorithms, as well as for providing
critical training and benchmark data for such algorithms.
Although some datasets for food recommendation [67] are
available, there are few public large-scale datasets, especially
with multimodal information (e.g., food images and other rich
attributes) for food recommendation. Therefore, collecting
and releasing a large-scale multimodal benchmark dataset for
the food recommendation task is in urgent need.

C. Large-scale Food KG Construction

A complete KG can provide a deeper and longer range of
associations between items. It has been proved effectively in
recommendation system for many fields, such as movies and
books. Unfortunately, there is no food-oriented KG available.
Therefore, we should construct food-oriented KG. In order to
obtain comprehensive food profile, we should crawl and parse
metadata from various media sites with structured and semi-
structured data. In many websites, metadata associated with
content is poorly structured without a well defined ontology,
especially in various social media. As a result, it is very hard
to explore. Towards the food KG, we should define nodes
and edges, and establish the standard for the food domain. A
good starting point is to utilize food items from Wikipedia8 to
build the food KG. In addition, we can even associate visual
information and other modality information with this KG to
build multimodal food knowledge graph.

D. Tight Combination between DL and KG

Like other types of recommendation, food recommendation
systems work on a lot of heterogeneous multi-modal infor-
mation. Current systems mostly leverage heterogeneous infor-
mation to improve the recommendation performance, while
a lot of research efforts are needed regarding how to jointly
leverage heterogeneous information for food recommendation.
These include a wide range of research tasks such as multi-
modal alignment on multiple different modalities and transfer
learning over heterogeneous information sources for food
recommendation. Recently, recommendation has undergone a
fundamental paradigm shift towards using deep learning as
a general-purpose solution. One key advantage of adopting
DL is that arbitrary continuous and categorical features can
be easily added to the model. some works [17] have utilized
deep learning for food recommendation. We expect the wide

8https://en.wikipedia.org/wiki/Lists of foods

https://grouplens.org/datasets/movielens/1m/
https://grouplens.org/datasets/movielens/1m/
https://en.wikipedia.org/wiki/Lists_of_foods
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use of deep learning to enhance the performance of food
recommendation.

On the other hand, incorporating KG into recommender
systems has attracted increasing attention in recent years.
Compared with multimodal information, by exploring the
relationships within a KG, the connectivity between users and
items can be discovered and provides rich and complemen-
tary information to user-item interactions. However, to our
knowledge, there is no work on food recommendation. The
probable reason is that there is no constructed food-specific
KG. Constructing the KG in the food domain requires us
carefully define nodes and types of relationships, which is not
easy to complete. Even we have available food KG, how to
effectively combine KG embedding and collaborative filtering
in the unified framework is still one hot topic and needs further
exploration. Finally, effectively combining DL and KG jointly
for food recommendation in a two-wheeled driven way will
be needed.

E. Explainable Food Recommendation

Explainable recommendation refers to personalized recom-
mendation algorithms that address the problem of why-they
not only provide users with the recommendations, but also
provide explanations to make the user aware of why such items
are recommended. The same is true for food recommendation.
Because food recommendation considers more complex and
various factors, in this way, explainable food recommenda-
tion helps to find out main factors affecting recommended
results and thus improve user satisfaction of recommendation
systems. Incorporating KG into food recommendation is a
promising direction for explainable food recommendation.
In addition, the research community has been leveraging
deep learning techniques for food recommendation. Current
approaches focus on designing deep models to improve the
performance. However, the research of leveraging deep models
for explainable food recommendation is still in its initial stage,
and there is much more to be explored in the future.

VI. CONCLUSIONS

Food recommendation is a promising and important re-
search direction for its importance to quality of life for
people and potential applications in human health. It provides
people with ranked food items using rich context and knowl-
edge, personal model constructed dynamically using Foodlog,
and heterogeneous food analysis to understand nutrition and
taste characteristics. However, there are very few systematic
reviews. We believe that a critical and exhaustive review
presented here may encourage researchers to shape this area.
We provide a comprehensive and in-depth summary of current
efforts as well as detail open problems in this area. This
paper contains a comprehensive overview of food recommen-
dation by proposing and using a unified food recommendation
framework. Main issues affecting food recommendation are
identified. The existing solutions are also introduced.

The area of food recommendation is still in its infancy with
many challenges and open questions. Many of the challenges

cannot be addressed using techniques from only one disci-
pline. We believe that multidisciplinary research that combines
nutrition, food science, psychology, biology, anthropology and
sociology will lead to more powerful approaches and technolo-
gies to handle food recommendation. Thus, considering huge
potentials in human health and great commercial applications,
we will look forward to seeing the surge in this research field
in the foreseeable future.

REFERENCES

[1] A. Tirosh, E. S. Calay, G. Tuncman, K. C. Claiborn, K. E. Inouye,
K. Eguchi, M. Alcala, M. Rathaus, K. S. Hollander, I. Ron, R. Livne,
Y. Heianza, L. Qi, I. Shai, R. Garg, and G. S. Hotamisligil, “The short-
chain fatty acid propionate increases glucagon and FABP4 production,
impairing insulin action in mice and humans,” Science Translational
Medicine, vol. 11, no. 489, 2019.

[2] I.D.Federation, IDF Diabetes Atlas. International Diabetes Federation,
2015.

[3] G. . R. F. Collaborators, “Global, regional, and national incidence,
prevalence, and years lived with disability for 354 diseases and injuries
for 195 countries and territories, 1990-2017: a systematic analysis for
the global burden of disease study 2017,” The Lancet, vol. 392, no.
10159, pp. 1789 – 1858, 2018.

[4] W. Min, S. Jiang, L. Liu, Y. Rui, and R. Jain, “A survey on food
computing,” ACM Comput. Surv., vol. 52, no. 5, pp. 92:1–92:36, 2019.

[5] W. Min, S. Jiang, S. Wang, R. Xu, Y. Cao, L. Herranz, and Z. He,
“A survey on context-aware mobile visual recognition,” Multimedia
Systems, vol. 23, no. 6, pp. 647–665, 2017.

[6] S. Boll, J. Meyer, and N. E. O’Connor, “Health media: From multimedia
signals to personal health insights,” IEEE MultiMedia, vol. 25, no. 1,
pp. 51–60, 2018.

[7] T. Maruyama, Y. Kawano, and K. Yanai, “Real-time mobile recipe rec-
ommendation system using food ingredient recognition,” in Proceedings
of the ACM international workshop on interactive multimedia on mobile
and portable devices, 2012, pp. 27–34.

[8] N. Nag, V. Pandey, and R. Jain, “Live personalized nutrition recommen-
dation engine,” in Proceedings of the 2Nd International Workshop on
Multimedia for Personal Health and Health Care, 2017, pp. 61–68.

[9] ——, “Health multimedia: Lifestyle recommendations based on diverse
observations,” in Proceedings of the ACM on International Conference
on Multimedia Retrieval, 2017, pp. 99–106.

[10] C. Trattner and D. Elsweiler, “Food recommender systems: Important
contributions, challenges and future research directions,” arXiv preprint
arXiv:1711.02760, 2017.

[11] R. Burke, “Hybrid recommender systems: Survey and experiments,”
User Modeling and User-Adapted Interaction, vol. 12, no. 4, pp. 331–
370, 2002.

[12] Z. Lou, Li, L. Wang, and G. Shen, “Recent progress of self-powered
sensing systems for wearable electronics,” Small, vol. 13, no. 45, p.
1701791, 2017.

[13] E. Strickland, “3 sensors to track every bite and gulp [news],” IEEE
Spectrum, vol. 55, no. 7, pp. 9–10, 2018.

[14] K. Aizawa and M. Ogawa, “Foodlog: Multimedia tool for healthcare
applications,” IEEE MultiMedia, vol. 22, no. 2, pp. 4–8, 2015.

[15] S. Kim, M. F. Fenech, and P. J. Kim, “Nutritionally recommended
food for semi- to strict vegetarian diets based on large-scale nutrient
composition data,” Scientific Reports, vol. 8, no. 1, p. 4344, 2018.

[16] M. Elahi, D. Elsweiler, G. Groh, M. Harvey, B. Ludwig, F. Ricci,
and A. Said, “User nutrition modelling and recommendation: Balancing
simplicity and complexity,” in Adjunct Publication of the Conference on
User Modeling, Adaptation and Personalization, 2017, pp. 93–96.

[17] L. Yang, C. K. Hsieh, H. Yang, J. P. Pollak, N. Dell, S. Belongie, C. Cole,
and D. Estrin, “Yum-Me: A personalized nutrient-based meal recom-
mender system,” ACM Transactions on Information Systems, vol. 36,
no. 1, p. 7, 2017.

[18] L. Bossard, M. Guillaumin, and L. Van Gool, “Food-101-mining dis-
criminative components with random forests,” in European Conference
on Computer Vision, 2014, pp. 446–461.

[19] L. Smith and M. Gasser, “The development of embodied cognition: six
lessons from babies.” Artificial Life, vol. 11, no. 1-2, pp. 13–29, 2014.

[20] F. Cordeiro, E. Bales, E. Cherry, and J. Fogarty, “Rethinking the
mobile food journal: Exploring opportunities for lightweight photo-
based capture,” in Proceedings of the ACM Conference on Human
Factors in Computing Systems, 2015, pp. 3207–3216.



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. XX, MONTH YEAR 12

[21] Y. Fu, B. Liu, G. Yong, Z. Yao, and X. Hui, “User preference learning
with multiple information fusion for restaurant recommendation,” in
Proceedings of the SIAM International Conference on Data Mining,
2014, p. 470478.

[22] N. Nitish, P. Vaibhav, S. Abhisaar, L. Jonathan, W. Runyi, and J. Ramesh,
“Pocket dietitian: automated healthy dish recommendations by location,”
in International Conference on Image Analysis and Processing, 2017,
pp. 444–452.

[23] S. Sanjo and M. Katsurai, “Recipe popularity prediction with deep
visual-semantic fusion,” in Proceedings of the ACM on Conference on
Information and Knowledge Management, 2017, pp. 2279–2282.

[24] J. Meyer and S. Boll, “Digital health devices for everyone!” IEEE
Pervasive Computing, vol. 13, no. 2, pp. 10–13, 2014.

[25] I. Fulgoni, Victor L., D. R. Keast, and A. Drewnowski, “Development
and Validation of the Nutrient-Rich Foods Index: A Tool to Measure
Nutritional Quality of Foods,” The Journal of Nutrition, vol. 139, no. 8,
pp. 1549–1554, 2009.
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